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Erdos-Rényi random graph

G(n,p) : A graph on n vertices, where each pair of vertices are connected by
an edge independently with probability p.

Recall that adjacency matrix of a graph G on n vertices is an n x n symmetric

matrix A such that
1 i~j

A(i’j):{ 0 ifj.

T

Figure: Adjacency matrix of G(50,.125)



Stochastic Block Model (balanced, with two communities)

Divide n vertices into two groups S1 and Sz such that |Si| = |S2| =n/2. Each
vertex ¢ has a label o;
o = { +1 1€ Sl

-1 iESQ.

i ~ j with probability
_ { P if ¢ & j are in same group, i.e, 0; = 0,

q ifi & j are in different groups, i.e, o; # 7;.

The above random graph is called the stochastic block model (SBM) and is
denoted by G(n,p, q). We assume that p > q.

A variant of SBM: choose the labels o; " 1 with probability 1/2.

Community detection problem. Identify the (hidden) labels (possibly
approximately) from (0 );c[,] from the adjacency matrix of G(n,p,q).
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Figure: Adjacency matrix of G(100,.2,.05) (Left) vertices are ordered into groups 1
and 2. (Right) vertices are unordered.

We have already seen that the second eigenvector of laplacian/adjacency
matrix is useful in detecting the community. We will see its performance in this
random graph model.



We write A =E[A] + E where

E=A-E[A]

_ pJn/2 qJn/2 _
]E[A] - [ qJn/Q pJn/Z p[n’

where J,, /5 is n/2 x n/2 matrix of all ones.

The eigenvalues of E[A] are

+ - .
I%n—p, %n—p, -p  (multiplicity n - 2).

The eigenvectors corresponding to top two eigenvalues

1n/2 1n/2
1n/2 ' _]-n/2



The second eigenvector of E[A] perfectly recovers the labels (0;);c[n]!
However, we only get to observe A not E[A].

View A =E[A] + E as a perturbation of E[A]. Is
2nd eigenvector of A ~the 2nd eigenvector of E[A]

under this perturbation?



1E] = SUPg:|z]o=1 |Exlz.

Let E=A-E[A]. Then

|E| < C\/n  with high probability.

The above theorem is a corollary of the following result.

Theorem. (Spectral norm bound of a non-symmetric matriz)

Let B be an n x n (non-symmetric) matrix such that the entries are
independent, mean zero, and |B;;| <1 for all i,5. Then

|B| < C'\/n with high probability.

Decompose E into the upper-triangular part E* and lower-triangular part £~
such that

E=E"+E".
Apply the second theorem separately for E* and E~. Then with high

probability
|E| <|E™| +[E7| <2C"V/n.



Proof of spectral norm bound

IB| = sup (x, By).

@, yeR™:|[z]2=[ly]2=1

Concentration bound: For fixed z,y € N and for any u > 0,

P((z, By) > u) < e,

Problem: The above supremum is over an infinite set S™ ! x §™71.

Solution: We can take supremum over a suitable finite set (called e-net) of
5™ x §™1 by only paying a multiplicative constant factor.



e-net

A subset N c (X, d) is called an e-net if for any u € X, there exists v € N such
that d(u,v) <e.

There exists an e-net of S™™* of size at most (1 + 2/¢)*.




We build an e-net as follows.

Start by adding points one by one (arbitrarily) in S™~! such that any two pair
of points are at least € distance apart. Stop when no more points can be
added. The resulting set AV is an e-net (why?).

To bound ||, we bound the n-dimensional volume of the set

N:= | B(u,€/2)

ueN

from below and above.



Since the pairwise distance among the points in N is at least ¢, the balls of
radius €/2 around the points in N are disjoint. So,

Vol(N€) > [N]Vol(B(0,€/2)).

On the other hand, N c B(0,1 + ¢/2) yielding that

Vol(N°) < Vol(B(0,1 +€/2)).

Combining the two estimates

Vol(B(0,1+¢/2)) (1+¢/2\" n
NI B0, 2)) ‘( /2 ) =12/




Let A be a 1/4-net of the sphere S™* of size 9™. Then (exercise)

|B| <2 sup (z, By).
z,yeN

Union bound over the net:

P(|B| > C'v/n) < P( sup (z, By) > (C'/2)/n)

sup
z,yeN
< ¥ P((eBy)> (C'/2)va)

2
< (9n)2 . €7C 'n,/327

which can be made exponentially small in n by choosing sufficiently large
constant C' > 0.



Perturbation of eigenvalues

Let M and E be symmetric matrices. Set
M=M+E.

Let A\;(M) be the i-th largest eigenvalue of M with unit eigenvector v; (M)
(and similarly for M).

Theorem (Weyl’s law)

| Xi(DD) = X\i(M) |< |E|  for each i.

Hence for G(n,p,q), with high probability

Al(A)mp;qm )\Q(A)wp;qn, max|\i(4)| < OV
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Figure: Eigenvalues of SBM G(n =2000,p = .2,q = .05).



Perturbation of eigenvectors

The eigenvectors of M and M may not be close to each other even if |E| is
small.

Example: Let € >0 be small.

1+e€ 0 — |1 €
M:[o 1—6]’ M:[e 1]'
Check that |M - M| = /2¢. Also,
MM)= (D) =1+e, Xa(M)=Xo(M)=1-e.

However, the eigenvectors are totally different:

- - - 5[]

The instability of eigenvectors of M is caused by the lack of separation between
)\1(M) and AQ(M)



Theorem (Davis-Kahan)

Fix i. Let
& = min [\; (M) - \:(M)| > 0.
j#i

Then there exists 6 € {-1,+1} such that

Jos () ~ 0 (P2 < 2L




-9

Let A be the adjacency matrix of SBM G(n,p,q). Let yx = min(q, %5%) > 0.
Then with high probability sgn(v2(A)) identifies the two communities of G,
except for C'/u? misclassified vertices for some constant C' > 0.
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Figure: 2nd eigenvector of SBM G(n = 2000,p = .2,q = .05).



Proof

We apply Davis-Kahan theorem to compare v2(E[A]) with v2(A). Here
M =E[A] and M = A=E[A] + E.

For E[A], the eigenvalue gap around \; is

0 = min (nz%,nq) =nu > 0.

By Davis Kahan, there exists 6 € {-1,1} such that

ajg| o

[v2(E[A]) = Ov2(A) ]2 < wn S i

with high probability.
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This implies that

(c"> |

2l

If o5 # sgn(Bv2(A):), then the i-th term in the sum is bigger than 1.

(C//)2

Z 1(0; #sgn(fv2(A);)) <

with high probability.

Question. How can we estimate p and ¢ from the adjacency matrix?



SBM in sparse case

%) where a > b > 0 are constants.

We will consider SBM G(n,p = %,q
The mean degree of a vertex is ~ d := %

The eigenvalues of E[A] are

atb_a 42zt a a=b 4 0 (mubtiplicity n - 2).
n n

2 n 2

The eigenvectors corresponding to top two eigenvalues
]-n/2 ]-n/2
1n/2 ' _]-n/2

Even in the sparse case, the second eigenvector of E[ A] exactly recovers the

community labels.



However ...
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Figure: 2nd eigenvector of SBM G(n =400,p = 4/n,q = 2/n)



Failure of spectral method

In the sparse case, the noise matrix £ := A -E[A] is too big.

In fact,
logn

Al |1 E]| ~
AL ] - [ e

IE[LA]] ~ d.

Hence, we do not expect v2(A) and v2(E(A)) are close to each other.



effect of high degree vertices

For simplicity, let us consider Erdos-Renyi graph G(n,d/n).

If we pretend the degree of vertices are i.i.d. Bin(n - 1,d/n) ~ Poi(d) random
variables, then
max degree = dmax ~ Cn

logn
loglogn *

where P(Poi(d) > ¢,) = 1/n. A calculation yields ¢, ~
We would like to argue that with high probability

1
[ AL = At (A) ~ Vel ~ [ e
loglogn



Heuristics for A\ (A) ~ \/dmax

Lower bound. Let i be a vertex with degree dmax.

AM(A)? 2 (e, A%e;) = (A%)is = dimax.

Upper bound. For any k> 1
AL(A)?F < SN (A = (A7)
J

= DA™ < ”mjaX(A%)jj-
J

(A*%);5

™

Ajjl Ajljz "'Aj%—lj
J15J2502k-1

= number of closed walks of length 2k from j to j



If j is a high degree vertices, the number of closed walks of length 2k from j is
dominated by the closed walks of the form

j — 11 —>_] — g > .- —>] - 1 —>j, ’il,iz,.. .,’ik are neighbors ij,
where we allow repetition. There are exactly deg(j)* of them.
max A3F < ((1+€)dmax)".
J

1/2k

By choosing k > logn such that n — 1, we see that

A (A) < (1+€)Vmax.

logn
loglogn

leading eigenvectors tend to localize around high degree nodes.

The leading eigenvalues of A are all close to and the corresponding }

For SBM, the leading eigenvectors are again created by the high degree nodes
and do not contain information about the community labels.



Top Eigenvector of G(n,1.2/n) with n = 4000
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Big theorem: phase transition in SBM

Recall that d = 2.

Theorem

(a) (no recovery) If (a—b)/2 <~\/d or equivalently, (a —b)? < 2(a +b), then
any estimate 6 = o(A) will fail to perform better than random guess, i.e.,

1z 1
=Y 1(6i=0:) > =.
n = 2
(b) (partial recovery) If (a —b)/2 >\/d < (a—-b)? <2(a+b), then there exists
an estimate & that performs better than random guess, i.e., there exists

¢ > 0 such that

1 & 1
=3 1(6i=0i)> = +c for large n.
n = 2

Remark. In the sparse regime, the graph has a linear number of isolated
vertices. So, even if a is much larger than b, it is still not possible to come up
with an estimate that gives (almost) exact recovery, i.e.,



Consistent estimates for a and b

(a) If (a—b)/2>/d, then there exist consistent estimators

an - a and l;n—>b.

Moreover, these estimators can be computed in polynomial time.
(b) If (a—b)/2 <~/d, then there are no consistent estimators of a and b.




No detection if (a —b)/2 <~\/d

We will give an argument that if (a —b)/2 < \/d, then it is not possible to
distinguish two hypotheses

Hy: A, ~G(n,d/n) vs Hi:A,~G(n,a/n,b/n),

where o = (0)e[n] be i.i.d. £1 symmetric labels in SBM.

This means there does not exist a test statistics Ty, = T (Axn) (T, = 0 if we
accept Ho and T, = 1 if we accept H1) such that

PHO(Tn = 1) +PH1(T = 0) - 0.

o Non-detection strongly indicates (but it does not prove) non-recovery.

o If (a—b)/2 </d, then we can not distinguish between G(n,a/n,b/n) and
G(n,a/n,B/n) ifa+b=a+p and (a—B8)/2<+/(a+B)/2. So, we can

not consistently estimate a and b.



We will show that A,, ~ H; is contiguous to A,, ~ Hy, i.e., for any sequence of
events F,
PHO (An € Fn) - 0= PHl (An € Fn) - 0.

It is easy to see that contiguity implies non-detection: take F,, = {T), = 1}.

Let A, = (An(4,7))i<; be the collection of the upper triangular entries of A,,.

Let f,, and g, be the p.m.f. of A,, under H; and Hy respectively, i.e.,
fn(a) =Py, (An =a), gn(a)=Pg,(A,=a).

Also, fn(alo) =Pu, (A, = alo) denotes the conditional p.m.f. given the
labels. So, we have

fa(a) = Eq fu(ale).

Define

- gn(An)
x2 divergence of Hy w.r.t. Hg

x° (H||Ho) - Eng (fn(An) 71)

g(fn(a) ) g(a) = Zf"({l’)

’n



Observation. If x*(H1||Ho) < C, then

PHO (An € Fn) - 0= ]PHl (An € Fn) - 0.

Proof.

PHl (An € Fn) = an(a)l(aﬁFn)
=2 gzgggn(a)l(aem
< Z fn(a) : (a) 21 (a) (Cauchy-Schwarz)
\ (2@ ) @)\ & erno -

< (C+1)"*\/Py, (A, € F,) - 0.



If (a—b)/2 <\/d, then x*(H,||Ho) < C. \

Proof. Replica trick.

XC(Hil|Ho)+1=Y ];"n((é;)) =3 (EUJ;:((T)U))

~ Ea,ﬁ(fn(a|0')fn(a|&))
B Z: gn(a)

(& is ai.i.d. copy of o).

Let P,Q and (P + Q)/2 be the p.m.f.s of Ber(p = a/n),Ber(q = b/n), and

Ber((p +¢q)/2 = d/n).
For example, P(a) = P(Ber(p) = a) = p*(1-p)*™%, a€{0,1}.

Fualo) = TT(P(@i) Lo, + Qi) L0,y ) = TT (Lp 2t s 2,
g@ =TT (559

1<j



P+Q

PiQ  P-Q  )(PQ  P-Qs s
XZ(H1||H0)+1—ZEU,&H(( = 2 9i9)( 5 2 UUJ))

<j 2

P+Q P-Q P-Q._ (P-Q°
aag%( 2 0i0j + 5 0i0j + 2(P Q)O'za'jUin)

> 8w =1 SR -0

aij agj

P+Q

(P-Q)? C(p-9® . (p-9)° a+en
az; 2(P+Q)(aij) “2(p+q)  22-prq)  n

where
- (a _ b)2 Cl

= n<=—.
2atb) and 0<e -




a+en -
X (H1||H0)+1 IE,,,,H( Uzajmaj)

i<j

<Es.6 exp( En 20'10']0'7,0'])

i<j

SIEG,;,exp( 5 "ZU,UJUZUJ)
n

+€n
=Es 6 exp (0427; ) .

By CLT, n"*(,6) % Z ~ N(0,1). So,

Eo,6 exp ( a;— cn (o, &)2) S Ee2 %
n

:{ (1-a)'% ifa<1

+00 if a>1.

By hypothesis, o < 1. Therefore, x*(H||Ho) + 1 is bounded.



Estimates for a and b in partial recovery regime %b >Vd

Enough to estimate s = “T'b and d = ‘%’b. Since d > s > \/d, both s,d > 1.

If G, ~ G(n,d/n) or G(n,a/n,b/n) , then d, = Z#Enges —d.

A k-cycle: v1 ~wvg ~ -+ ~ v ~v1 where v1,..., v are distinct. Let Xy be the
number of k-cycles (modulo cyclic shifts and orientation).

When n — oo and k < (logn)/*

a . [d d* dF
G"NG(nvd/n)' XkNPOI(ﬁ) ~2k+0( 2]{:)

a . [d¥+s* dk + s* dk + sk
G ~G(n,a/n,b/n) : Xk~P01( o ) T +0 % .

Suppose G, ~ G(n,a/n,b/n). If 1 < k < (logn)'/*, then
8n = (2kX, —d)YE S s,

Exploiting the sparseness of G, X can be evaluated in polynomial time.



First moment calculation

Suppose G ~ G(n,d/[n).

1
E[Xk] = (n)k'ﬂp(vl ~N U N~V ~’U1)

“\k)] T 26 \n 2k"

Suppose G ~ G(n,afn,b/n). A similar calculation shows

o

d* + s*

BLXe]~ —p

P(vy ~vg ~ -~ v ~v1) =0 (¥ +db).



In the partial recovery regime (a —b)/2 > \/d, the spectral method fails for
adjacency matrix. However, the spectral method works for a new matrix called
nonbacktracking matrix.

Let G = (V, E) be undirected graph. For each (7,7) € E, form two directed
edges i — j and j — i. The non-backtracking matrix B is a 2|E| x 2|E| matrix
such that

[ ifi=kizl
k=l T g otherwise.

(A"™)i,; = # walks of r + 1 vertices starting from ¢ and ending at j.

(B")i—j,k—1 = # non-backtracking walks of r + 1 directed edges starting from
i — j and ending at k — [.



Some properties of non-backtracking matrix

@ B is not symmetric. So, its eigenvalues are complex-valued in general.

Perron-Frobenius theorem. A1 > |A2| > -+ > |Aom| (m = # edges).

o Spectrum of B is given by lhara-Bass-Hashimoto identity:
det(I - zB) = (1 - 22)PIWVldet(1 - zA + 2*(D - 1)),
where D = diag(deg(1),...,deg(n)) is the diagonal degree matrix.
o B has 2(m —n) eigenvalues +1 (non-informative). The rest of the 2n
eigenvalues are informative.
o If the graph is d-regular, then D =dI. Then

eig(B) = {1} U{A: A> = Ap+ (d—1) =0, e eig(A)}.



Extremal eigenvalues of non-backtracking matrix in sparse regime

Theorem

Let d > 1. The following events happen with high probabilities.

(a) G(n,d/n): B has a single eigenvalue close to d. The remaining eigenvalues
are within disk {z :|z| < /d + €}

(b) SBM G(n,a/n,b/n) with “T‘b >/d: B has two eigenvalues close to d and
‘%b. The remaining eigenvalues are within disk {z : |z| < V/d + €}.




Eigenvalues of NB matriz of G(n,d/n) with n =2000 and d =4




Eigenvalues of NB matriz of G(n,a/n,b/n) with n =2000 and a =6,b=1




Eigenvalues of NB matriz of G(n,a/n,b/n) with n =2000 and a =4,b=3




Spectral Redemption

Consider SBM G(n,a/n,b/n) with 2% > Vd. Let £ be the eigenvector of B
corresponding to eigenvalue Ay » “T‘b Define

a'v = Sgﬂ( Z €u—>v)

wuU~NY

There exists ¢ > 0 such that with high probability,

1 1
=3 1(6v=0y) 2= +c forlargen.
n < 2




The local neighborhood of a random vertex of G(n,d/n) looks like a
Galton-Watson tree where each vertex has an independent Poi(d) many
children.

Y‘ao—\—



The local neighborhood of a random vertex of G(n,a/n,b/n) looks like a
multi-type Galton-Watson tree.

@ The root is red or blue with probability 1/2.

o Recursively, each vertex gives birth to a Poi(a/2) vertices of the same
color and a Poi(b/2) vertices of the different color (red or blue).

took

o Alternate Description. Generate a Galton-Watson tree with Poi(d)
offspring distribution. The root is red or blue with probability 1/2. The

color each childrer; is same as its parent with probability —%- and opposite

—15 independent of other individuals.

with probability



Kesten-Stigum threshold
For a vertex v of the tree, let us define

]+l if vis red
9v=Y Z1  if vis blue

and
Maj, =sgn( >, ow),

d(root,v)=r

i.e., if Maj,. = 1 if the majority of the vertices at depth r are red and Maj,. = -1
otherwise.

Fact
o If “T'b >/d then there exists ¢ > 0

1
P(0root = Maj,.) > 3+ for large 7.
o If “T’b <\/d then

1
lim P(0r00t = Maj,.) = 3



Approzimation of second eigenvector of B assuming s > \/d

Let s = ‘IT’I’. Define

() =" > oy

d(u—v,z—>y)=r

o We will show that £ is an approximate eigenvector of B with
approximate eigenvalue s = “T’b for large r.

e From multi-type Galton-Watson approximation and Kesten-Stigum bound,
for a random vertex v and u ~ v,

1
P(o, = sgn(¢2,)) = Jte for large r,

which implies that

1
P(oy, =sgn( >, £y > 3% ¢ for large r.

wu~v



(Bg(T))u—w —s" Z oy=s- 1(;:2})
d(u—v,z—>y)=r+l

or,
Bg(r) =g .g(“‘l).

M, —elrt) =577 > (ay -5t Y o

d(u—v,x—>y)=r Z~Y,2FT

=Vy

There are d” many terms in the sum on average.

Given the spins of the vertices at depth r from v, the random variables V,,’s are
mean zero and of constant variance. Therefore,

E( (r)y _ (r+1))2 < Cs 7 d" w 0,

u—>v u—v

under the assumption that s >+/d and r is large.

So, £~y €% and BEC) w 5£(),



Almost all eigenvalues satisfy |\ < \/d

Let A1,..., A2y, be the eigenvalues of B.

Forany k>1

1 2k 1 k2 1 k kENT
— S N e =S NP < —t(BY(B
g S = 5 SN < 5 (B (BT

1 k ENT
B
1 k k
= % Z (B )uav,zﬁy(B )y»z,vﬁu-

U=V, T>Y

In the last line, we used the fact BE_,v’z_,y = Bysu,y—z. Consequently,
E\T k
(B )uﬁv,z»y = B’uau,yﬂz-



Recall (B*)y—u,4-y counts the number of non-backtracking walks of involving
k+1 edges from u - v to z — y.

If the local neighborhood of v is a tree, then there can be at most one such
path u > v to z - y.

Z (Bk)u—w,zcay(Bk)y—»x,U—»u

r—y

= #x — y that are distance k from u - v » d*.

So, with high probability,
LZP\J%Sdk.
2m 5

This implies that all but a vanishing proportion of the eigenvalues are confined
within the disk of radius \/d.
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