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Part II



Erdös-Rényi random graph

G(n, p) ∶ A graph on n vertices, where each pair of vertices are connected by
an edge independently with probability p.

Recall that adjacency matrix of a graph G on n vertices is an n × n symmetric
matrix A such that

A(i, j) = {
1 i ∼ j
0 i /∼ j.

Figure: Adjacency matrix of G(50, .125)



Stochastic Block Model (balanced, with two communities)

Divide n vertices into two groups S1 and S2 such that ∣S1∣ = ∣S2∣ = n/2. Each
vertex i has a label σi

σi = {
+1 i ∈ S1

−1 i ∈ S2.

i ∼ j with probability

= {
p if i & j are in same group, i.e, σi = σj ,
q if i & j are in different groups, i.e, σi ≠ σj .

The above random graph is called the stochastic block model (SBM) and is
denoted by G(n, p, q). We assume that p > q.

A variant of SBM: choose the labels σi
i.i.d.
∼ ±1 with probability 1/2.

Community detection problem. Identify the (hidden) labels (possibly
approximately) from (σi)i∈[n] from the adjacency matrix of G(n, p, q).



Figure: Adjacency matrix of G(100, .2, .05) (Left) vertices are ordered into groups 1
and 2. (Right) vertices are unordered.

We have already seen that the second eigenvector of laplacian/adjacency
matrix is useful in detecting the community. We will see its performance in this
random graph model.



We write A = E[A] +E where

E = A − E[A].

E[A] = [
pJn/2 qJn/2
qJn/2 pJn/2

] − pIn,

where Jn/2 is n/2 × n/2 matrix of all ones.

The eigenvalues of E[A] are

p + q

2
n − p,

p − q

2
n − p, −p (multiplicity n − 2).

The eigenvectors corresponding to top two eigenvalues

(
1n/2
1n/2

) , (
1n/2
−1n/2

)



The second eigenvector of E[A] perfectly recovers the labels (σi)i∈[n]!

However, we only get to observe A not E[A].

View A = E[A] +E as a perturbation of E[A]. Is

2nd eigenvector of A ≈ the 2nd eigenvector of E[A]

under this perturbation?



∥E∥ = supx∶∥x∥2=1 ∥Ex∥2.

Theorem

Let E = A − E[A]. Then

∥E∥ ≤ C
√
n with high probability.

The above theorem is a corollary of the following result.

Theorem (Spectral norm bound of a non-symmetric matrix)

Let B be an n × n (non-symmetric) matrix such that the entries are
independent, mean zero, and ∣Bij ∣ ≤ 1 for all i, j. Then

∥B∥ ≤ C′√n with high probability.

Decompose E into the upper-triangular part E+ and lower-triangular part E−

such that
E = E+

+E−.

Apply the second theorem separately for E+ and E−. Then with high
probability

∥E∥ ≤ ∥E+
∥ + ∥E−

∥ ≤ 2C′√n.



Proof of spectral norm bound

∥B∥ = sup
x,y∈Rn ∶∥x∥2=∥y∥2=1

⟨x,By⟩.

Concentration bound: For fixed x, y ∈ N and for any u > 0,

P(⟨x,By⟩ ≥ u) ≤ e−u
2
/8.

Problem: The above supremum is over an infinite set Sn−1 × Sn−1.

Solution: We can take supremum over a suitable finite set (called ε-net) of
Sn−1 × Sn−1 by only paying a multiplicative constant factor.



ε-net

Definition

A subset N ⊂ (X, d) is called an ε-net if for any u ∈ X, there exists v ∈ N such
that d(u, v) ≤ ε.

Lemma (size of ε-net)

There exists an ε-net of Sn−1 of size at most (1 + 2/ε)s.



We build an ε-net as follows.

Start by adding points one by one (arbitrarily) in Sn−1 such that any two pair
of points are at least ε distance apart. Stop when no more points can be
added. The resulting set N is an ε-net (why?).

To bound ∣N ∣, we bound the n-dimensional volume of the set

N
ε
∶= ⋃
u∈N

B(u, ε/2)

from below and above.



Since the pairwise distance among the points in N is at least ε, the balls of
radius ε/2 around the points in N are disjoint. So,

Vol(N ε
) ≥ ∣N ∣Vol(B(0, ε/2)).

On the other hand, N ε
⊂ B(0,1 + ε/2) yielding that

Vol(N ε
) ≤ Vol(B(0,1 + ε/2)).

Combining the two estimates

∣N ∣ ≤
Vol(B(0,1 + ε/2))
Vol(B(0, ε/2))

= (
1 + ε/2

ε/2
)

n

= (1 + 2/ε)n .



Let N be a 1/4-net of the sphere Sn−1 of size 9n. Then (exercise)

∥B∥ ≤ 2 sup
x,y∈N

⟨x,By⟩.

Union bound over the net:

P(∥B∥ > C′√n) ≤ P( sup
x,y∈N

⟨x,By⟩ > (C′
/2)

√
n)

≤ ∑
x,y∈N

P(⟨x,By⟩ > (C′
/2)

√
n)

≤ (9n)2 ⋅ e−C
′2n/32,

which can be made exponentially small in n by choosing sufficiently large
constant C′

> 0.



Perturbation of eigenvalues

Let M and E be symmetric matrices. Set

M̂ =M +E.

Let λi(M) be the i-th largest eigenvalue of M with unit eigenvector vi(M)

(and similarly for M̂).

Theorem (Weyl’s law)

∣ λi(M̂) − λi(M) ∣≤ ∥E∥ for each i.

Hence for G(n, p, q), with high probability

λ1(A) ≈
p + q

2
n, λ2(A) ≈

p − q

2
n, max

i≥2
∣λi(A)∣ ≤ C

√
n.
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Figure: Eigenvalues of SBM G(n = 2000, p = .2, q = .05).



Perturbation of eigenvectors

The eigenvectors of M and M̂ may not be close to each other even if ∥E∥ is
small.

Example: Let ε > 0 be small.

M = [
1 + ε 0
0 1 − ε

] , M̂ = [
1 ε
ε 1

] .

Check that ∥M̂ −M∥ =
√
2ε. Also,

λ1(M) = λ1(M̂) = 1 + ε, λ2(M) = λ2(M̂) = 1 − ε.

However, the eigenvectors are totally different:

v1(M) = [
1
0
] , v2(M) = [

0
1
] , v1(M̂) =

1
√
2
[
1
1
] , v2(M̂) =

1
√
2
[
1
−1

] .

The instability of eigenvectors of M is caused by the lack of separation between
λ1(M) and λ2(M).



Theorem (Davis-Kahan)

Fix i. Let
δ =min

j≠i
∣λj(M) − λi(M)∣ > 0.

Then there exists θ ∈ {−1,+1} such that

∥vi(M) − θvi(M̂)∥2 ≤
4∥E∥

δ
.



Theorem

Let A be the adjacency matrix of SBM G(n, p, q). Let µ =min(q, p−q
2

) > 0.
Then with high probability sgn(v2(A)) identifies the two communities of G,
except for C/µ2 misclassified vertices for some constant C > 0.
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Figure: 2nd eigenvector of SBM G(n = 2000, p = .2, q = .05).



Proof

We apply Davis-Kahan theorem to compare v2(E[A]) with v2(A). Here
M = E[A] and M̂ = A = E[A] +E.

For E[A], the eigenvalue gap around λ2 is

δ =min(n
p − q

2
, nq) = nµ > 0.

By Davis Kahan, there exists θ ∈ {−1,1} such that

∥v2(E[A]) − θv2(A)∥2 ≤
4∥E∥

nµ
≤

C′′

√
nµ

,

with high probability.



∑
i

∣
√
nv2(E[A])i −

√
nθv2(A)i∣

2

≤
(C′′

)
2

µ2
.

This implies that

∑
i

∣σi −
√
nθv2(A)i∣

2

≤
(C′′

)
2

µ2
.

If σi ≠ sgn(θv2(A)i), then the i-th term in the sum is bigger than 1.

∑
i

1(σi ≠ sgn(θv2(A)i)) ≤
(C′′

)
2

µ2
,

with high probability.

Question. How can we estimate p and q from the adjacency matrix?



SBM in sparse case

We will consider SBM G(n, p = a
n
, q = b

n
) where a > b > 0 are constants.

The mean degree of a vertex is ≈ d ∶= a+b
2
.

The eigenvalues of E[A] are

a + b

2
−
a

n
≈ d,

a − b

2
−
a

n
≈
a − b

2
, −

a

n
≈ 0 (multiplicity n − 2).

The eigenvectors corresponding to top two eigenvalues

(
1n/2
1n/2

) , (
1n/2
−1n/2

)

Even in the sparse case, the second eigenvector of E[A] exactly recovers the
community labels.



However ...
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Figure: 2nd eigenvector of SBM G(n = 400, p = 4/n, q = 2/n)



Failure of spectral method

In the sparse case, the noise matrix E ∶= A − E[A] is too big.

In fact,

∥A∥, ∥E∥ ∼

√
logn

log logn
vs ∥E[A]∥ ∼ d.

Hence, we do not expect v2(A) and v2(E(A)) are close to each other.



effect of high degree vertices

For simplicity, let us consider Erdos-Renyi graph G(n, d/n).

If we pretend the degree of vertices are i.i.d. Bin(n − 1, d/n) ≈ Poi(d) random
variables, then

max degree = dmax ∼ cn

where P(Poi(d) ≥ cn) = 1/n. A calculation yields cn ∼ logn
log logn

.

We would like to argue that with high probability

∥A∥ = λ1(A) ∼
√
dmax ∼

√
logn

log logn
,



Heuristics for λ1(A) ∼
√

dmax

Lower bound. Let i be a vertex with degree dmax.

λ1(A)
2
≥ ⟨ei,A

2ei⟩ = (A2
)ii = dmax.

Upper bound. For any k ≥ 1

λ1(A)
2k

≤∑
j

λj(A)
2k

= tr(A2k
)

=∑
j

(A2k
)jj ≤ nmax

j
(A2k

)jj .

(A2k
)jj = ∑

j1,j2,...,j2k−1

Ajj1Aj1j2⋯Aj2k−1j

= number of closed walks of length 2k from j to j



If j is a high degree vertices, the number of closed walks of length 2k from j is
dominated by the closed walks of the form

j → i1 → j → i2 → ⋯→ j → ik → j, i1, i2, . . . , ik are neighbors of j,

where we allow repetition. There are exactly deg(j)k of them.

max
j
A2k
jj ≤ ((1 + ε)dmax)

k.

By choosing k ≫ logn such that n1/2k
→ 1, we see that

λ1(A) ≤ (1 + ε)
√
dmax.

The leading eigenvalues of A are all close to
√

logn
log logn

and the corresponding
leading eigenvectors tend to localize around high degree nodes.

For SBM, the leading eigenvectors are again created by the high degree nodes
and do not contain information about the community labels.
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Big theorem: phase transition in SBM

Recall that d = a+b
2
.

Theorem

(a) (no recovery) If (a − b)/2 <
√
d or equivalently, (a − b)2 < 2(a + b), then

any estimate σ̂ = σ(A) will fail to perform better than random guess, i.e.,

1

n

n

∑
i=1

1(σ̂i = σi)→
1

2
.

(b) (partial recovery) If (a − b)/2 >
√
d⇔ (a − b)2 < 2(a + b), then there exists

an estimate σ̂ that performs better than random guess, i.e., there exists
c > 0 such that

1

n

n

∑
i=1

1(σ̂i = σi) ≥
1

2
+ c for large n.

Remark. In the sparse regime, the graph has a linear number of isolated
vertices. So, even if a is much larger than b, it is still not possible to come up
with an estimate that gives (almost) exact recovery, i.e.,

1

n

n

∑
i=1

1(σ̂i = σi)→ 1.



Consistent estimates for a and b

Theorem

(a) If (a − b)/2 >
√
d, then there exist consistent estimators

ân → a and b̂n → b.

Moreover, these estimators can be computed in polynomial time.

(b) If (a − b)/2 <
√
d, then there are no consistent estimators of a and b.



No detection if (a − b)/2 <
√

d

We will give an argument that if (a − b)/2 <
√
d, then it is not possible to

distinguish two hypotheses

H0 ∶ An ∼ G(n, d/n) vs H1 ∶ An ∼ G(n, a/n, b/n),

where σ = (σi)i∈[n] be i.i.d. ±1 symmetric labels in SBM.

This means there does not exist a test statistics Tn = Tn(An) (Tn = 0 if we
accept H0 and Tn = 1 if we accept H1) such that

PH0(Tn = 1) + PH1(Tn = 0)→ 0.

Non-detection strongly indicates (but it does not prove) non-recovery.

If (a − b)/2 <
√
d, then we can not distinguish between G(n, a/n, b/n) and

G(n,α/n,β/n) if a + b = α + β and (α − β)/2 <
√

(α + β)/2. So, we can
not consistently estimate a and b.



We will show that An ∼H1 is contiguous to An ∼H0, i.e., for any sequence of
events Fn

PH0(An ∈ Fn)→ 0⇒ PH1(An ∈ Fn)→ 0.

It is easy to see that contiguity implies non-detection: take Fn = {Tn = 1}.

Let An = (An(i, j))i<j be the collection of the upper triangular entries of An.

Let fn and gn be the p.m.f. of An under H1 and H0 respectively, i.e.,

fn(a) = PH1(An = a), gn(a) = PH0(An = a).

Also, fn(a∣σ) = PH1(An = a∣σ) denotes the conditional p.m.f. given the
labels. So, we have

fn(a) = Eσfn(a∣σ).

Define

χ2
(H1∣∣H0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
χ2 divergence of H1 w.r.t. H0

∶= EH0 (
fn(An)

gn(An)
− 1)

2

=∑
a

(
fn(a)

gn(a)
− 1)

2

g(a) =∑
a

fn(a)
2

gn(a)
− 1



Observation. If χ2
(H1∣∣H0) ≤ C, then

PH0(An ∈ Fn)→ 0⇒ PH1(An ∈ Fn)→ 0.

Proof.

PH1(An ∈ Fn) =∑
a

fn(a)1(a∈Fn)

=∑
a

fn(a)

gn(a)
gn(a)1(a∈Fn)

≤

¿
Á
Á
ÁÀ

⎛

⎝
∑
a

(
fn(a)

gn(a)
)

2

gn(a)
⎞

⎠
(∑

a

1(a∈Fn)gn(a)) (Cauchy-Schwarz)

≤ (C + 1)1/2
√
PH0(An ∈ Fn)→ 0.



Lemma

If (a − b)/2 <
√
d, then χ2

(H1∣∣H0) ≤ C.

Proof. Replica trick.

χ2
(H1∣∣H0) + 1 =∑

a

fn(a)
2

gn(a)
=∑

a

(Eσfn(a∣σ))
2

gn(a)

=∑
a

Eσ,σ̃(fn(a∣σ)fn(a∣σ̃))

gn(a)
(σ̃ is a i.i.d. copy of σ).

Let P ,Q and (P +Q)/2 be the p.m.f.s of Ber(p = a/n),Ber(q = b/n), and
Ber((p + q)/2 = d/n).
For example, P (a) = P(Ber(p) = a) = pa(1 − p)1−a, a ∈ {0,1}.

fn(a∣σ) =∏
i<j

(P (aij)1{σiσj=1}+Q(aij)1{σiσj=−1}) =∏
i<j

(
P +Q

2
+
P −Q

2
σiσj),

gn(a) =∏
i<j

(
P +Q

2
).



χ2
(H1∣∣H0) + 1 =∑

a

Eσ,σ̃∏
i<j

⎛

⎝

(
P+Q
2

+
P−Q
2
σiσj)(

P+Q
2

+
P−Q
2
σ̃iσ̃j)

P+Q
2

⎞

⎠

= Eσ,σ̃∏
i<j

∑
aij

(
P +Q

2
+
P −Q

2
σiσj +

P −Q

2
σ̃iσ̃j +

(P −Q)
2

2(P +Q)
σiσj σ̃iσ̃j)

∑
aij

P +Q

2
(aij) = 1, ∑

aij

P −Q

2
(aij) = 0

∑
aij

(P −Q)
2

2(P +Q)
(aij) =

(p − q)2

2(p + q)
+

(p − q)2

2(2 − p + q)
=
α + εn
n

,

where

α ∶=
(a − b)2

2(a + b)
and 0 ≤ εn ≤

C′

n
.



χ2
(H1∣∣H0) + 1 = Eσ,σ̃∏

i<j

(1 +
α + εn
n

σiσj σ̃iσ̃j)

≤ Eσ,σ̃ exp
⎛

⎝

α + εn
n

∑
i<j

σiσj σ̃iσ̃j
⎞

⎠

≤ Eσ,σ̃ exp
⎛

⎝

α + εn
2n

∑
i,j

σiσj σ̃iσ̃j
⎞

⎠

= Eσ,σ̃ exp(
α + εn
2n

⟨σ, σ̃⟩
2
) .

By CLT, n−1/2⟨σ, σ̃⟩
d
→ Z ∼ N(0,1). So,

Eσ,σ̃ exp(
α + εn
2n

⟨σ, σ̃⟩
2
)→ Ee

α
2
Z2

= {
(1 − α)−1/2 if α < 1

+∞ if α ≥ 1.

By hypothesis, α < 1. Therefore, χ2
(H1∣∣H0) + 1 is bounded.



Estimates for a and b in partial recovery regime a−b
2 >

√

d

Enough to estimate s = a−b
2

and d = a+b
2
. Since d > s >

√
d, both s, d > 1.

If Gn ∼ G(n, d/n) or G(n, a/n, b/n) , then d̂n =
2#edges

n
→ d.

A k-cycle: v1 ∼ v2 ∼ ⋯ ∼ vk ∼ v1 where v1, . . . , vk are distinct. Let Xk be the
number of k-cycles (modulo cyclic shifts and orientation).

When n→∞ and k ≤ (logn)1/4

Gn ∼ G(n, d/n) ∶ Xk
d
≈ Poi(

dk

2k
) ≈

dk

2k
+O

⎛

⎝

√
dk

2k

⎞

⎠
.

Gn ∼ G(n, a/n, b/n) ∶ Xk
d
≈ Poi(

dk + sk

2k
) ≈

dk + sk

2k
+O

⎛

⎝

√
dk + sk

2k

⎞

⎠
.

Suppose Gn ∼ G(n, a/n, b/n). If 1≪ k ≤ (logn)1/4, then

ŝn = (2kXk − d̂
k
n)

1/k
→ s.

Exploiting the sparseness of Gn, Xk can be evaluated in polynomial time.



First moment calculation

Suppose G ∼ G(n, d/n).

E[Xk] = (
n

k
) ⋅ k! ⋅

1

2k
⋅ P(v1 ∼ v2 ∼ ⋯ ∼ vk ∼ v1)

= (
n

k
) ⋅ k! ⋅

1

2k
⋅ (
d

n
)

k

∼
dk

2k
.

Suppose G ∼ G(n, a/n, b/n). A similar calculation shows

E[Xk] ∼
dk + sk

2k
.

P(v1 ∼ v2 ∼ ⋯ ∼ vk ∼ v1) = n
−k

(sk + dk).



In the partial recovery regime (a − b)/2 >
√
d, the spectral method fails for

adjacency matrix. However, the spectral method works for a new matrix called
nonbacktracking matrix.

Let G = (V,E) be undirected graph. For each (i, j) ∈ E, form two directed
edges i→ j and j → i. The non-backtracking matrix B is a 2|E| × 2|E| matrix
such that

Bi→j,k→l = {
1 if j = k, i ≠ l
0 otherwise.

(Ar)i,j =# walks of r + 1 vertices starting from i and ending at j.

(Br)i→j,k→l =# non-backtracking walks of r + 1 directed edges starting from
i→ j and ending at k → l.



Some properties of non-backtracking matrix

B is not symmetric. So, its eigenvalues are complex-valued in general.

Perron-Frobenius theorem. λ1 ≥ ∣λ2∣ ≥ ⋯ ≥ ∣λ2m∣ (m =# edges).

Spectrum of B is given by Ihara-Bass-Hashimoto identity:

det(I − zB) = (1 − z2)∣E∣−∣V ∣det(I − zA + z2(D − I)),

where D = diag(deg(1), . . . ,deg(n)) is the diagonal degree matrix.

B has 2(m − n) eigenvalues ±1 (non-informative). The rest of the 2n
eigenvalues are informative.

If the graph is d-regular, then D = dI. Then

eig(B) = {±1} ∪ {λ ∶ λ2
− λµ + (d − 1) = 0, µ ∈ eig(A)}.



Extremal eigenvalues of non-backtracking matrix in sparse regime

Theorem

Let d > 1. The following events happen with high probabilities.

(a) G(n, d/n): B has a single eigenvalue close to d. The remaining eigenvalues
are within disk {z ∶ ∣z∣ ≤

√
d + ε}.

(b) SBM G(n, a/n, b/n) with a−b
2

>
√
d: B has two eigenvalues close to d and

a−b
2
. The remaining eigenvalues are within disk {z ∶ ∣z∣ ≤

√
d + ε}.



Eigenvalues of NB matrix of G(n, d/n) with n = 2000 and d = 4
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Eigenvalues of NB matrix of G(n, a/n, b/n) with n = 2000 and a = 6, b = 1
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Eigenvalues of NB matrix of G(n, a/n, b/n) with n = 2000 and a = 4, b = 3
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Spectral Redemption

Consider SBM G(n, a/n, b/n) with a−b
2

>
√
d. Let ξ be the eigenvector of B

corresponding to eigenvalue λ2 ≈
a−b
2
. Define

σ̂v ∶= sgn( ∑
u∶u∼v

ξu→v)

Theorem

There exists c > 0 such that with high probability,

1

n
∑
v

1(σ̂v = σv) ≥
1

2
+ c for large n.



The local neighborhood of a random vertex of G(n, d/n) looks like a
Galton-Watson tree where each vertex has an independent Poi(d) many
children.



The local neighborhood of a random vertex of G(n, a/n, b/n) looks like a
multi-type Galton-Watson tree.

The root is red or blue with probability 1/2.

Recursively, each vertex gives birth to a Poi(a/2) vertices of the same
color and a Poi(b/2) vertices of the different color (red or blue).

Alternate Description. Generate a Galton-Watson tree with Poi(d)
offspring distribution. The root is red or blue with probability 1/2. The
color each children is same as its parent with probability a

a+b
and opposite

with probability b
a+b

, independent of other individuals.



Kesten-Stigum threshold

For a vertex v of the tree, let us define

σv = {
+1 if v is red
−1 if v is blue

and
Majr = sgn( ∑

d(root,v)=r

σv),

i.e., if Majr = 1 if the majority of the vertices at depth r are red and Majr = −1
otherwise.

Fact

If a−b
2

>
√
d then there exists c > 0

P(σroot =Majr) ≥
1

2
+ c, for large r.

If a−b
2

≤
√
d then

lim
r→∞

P(σroot =Majr) =
1

2
.



Approximation of second eigenvector of B assuming s >
√

d

Let s = a−b
2
. Define

ξ(r)u→v = s
−r

∑
d(u→v,x→y)=r

σy.

We will show that ξ(r) is an approximate eigenvector of B with
approximate eigenvalue s = a−b

2
for large r.

From multi-type Galton-Watson approximation and Kesten-Stigum bound,
for a random vertex v and u ∼ v,

P(σv = sgn(ξ(r)u→v)) ≥
1

2
+ c for large r,

which implies that

P(σv = sgn( ∑
u∶u∼v

ξ(r)u→v)) ≥
1

2
+ c′ for large r.



(Bξ(r))u→v = s
−r

∑
d(u→v,x→y)=r+1

σy = s ⋅ ξ
(r+1)
u→v

or,
Bξ(r) = s ⋅ ξ(r+1).

ξ(r)u→v − ξ
(r+1)
u→v = s−r ∑

d(u→v,x→y)=r

(σy − s
−1

∑
z∼y,z≠x

σz)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Vy

There are dr many terms in the sum on average.

Given the spins of the vertices at depth r from v, the random variables Vy’s are
mean zero and of constant variance. Therefore,

E(ξ(r)u→v − ξ
(r+1)
u→v )

2
≤ Cs−2rdr ≈ 0,

under the assumption that s >
√
d and r is large.

So, ξ(r) ≈r→∞ ξ(∞) and Bξ(∞)
≈ sξ(∞).



Almost all eigenvalues satisfy ∣λ∣ ≤
√

d

Let λ1, . . . , λ2m be the eigenvalues of B.

For any k ≥ 1

1

2m
∑
i

∣λi∣
2k

=
1

2m
∑
i

∣λki ∣
2
≤

1

2m
tr(Bk(Bk)T )

=
1

2m
∑

u→v,x→y

(Bk)u→v,x→y(B
k
)
T
x→y,u→v

=
1

2m
∑

u→v,x→y

(Bk)u→v,x→y(B
k
)y→x,v→u.

In the last line, we used the fact BTu→v,x→y = Bv→u,y→x. Consequently,
(Bk)Tu→v,x→y = B

k
v→u,y→x.



Recall (Bk)u→v,x→y counts the number of non-backtracking walks of involving
k + 1 edges from u→ v to x→ y.

If the local neighborhood of v is a tree, then there can be at most one such
path u→ v to x→ y.

∑
x→y

(Bk)u→v,x→y(B
k
)y→x,v→u

=#x→ y that are distance k from u→ v ≈ dk.

So, with high probability,
1

2m
∑
i

∣λi∣
2k

≤ dk.

This implies that all but a vanishing proportion of the eigenvalues are confined
within the disk of radius

√
d.
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